

SETO CSP Program Summit 2019

Raman Spectroscopy-Based Molten Salt Composition Monitoring System

DOE-Funded Phase II SBIR effort (August 2018 - August 2020)

Principal Investigator: Kevin Harsh (harshk@sporian.com)

Presenter: Jon Lubbers (jlubbers@sporian.com)

Sporian Microsystems, Inc.

energy.gov/solar-office

Outline

- Motivation
- Technical Approach and Background
- Envisioned Final Product
- Project Status and Timeline

DOE Phase II Project Motivation

- Motivation: The DOE/CSP industry developed roadmap identifying technology gaps and pathways for next gen CSP plants (CSP Gen3)
 - Recommended research activity: in-situ, real time, online monitoring for molten salt composition/chemistry
 - Identify changes in the melt that may lead to severe material (salt and containment) degradation
- Need: The development of a "smart" in-situ, real time molten salt composition monitoring system
 - Measure range of molten salt compositions, contaminants, and byproducts
 - CSP Gen3 operational temperatures (up to 800°C) rugged for industrial applications
 - "Smart" features compliance with industry integrated data systems
 - On-board signal processing self-calibration, built in test, and support digital/data bus communications

Technical Approach: Raman Spectroscopy with Molten Salts

Raman Spectroscopy Technique:

- Optically excited molecules emit according to vibrational modes
- Species exhibit distinct spectral "fingerprints"
- Established method of chemical/molecular analysis
- Used in complex media
- Prior work with molten salts

Example MgCl₂ Raman peak intensity versus concentration at 720°C [2]

[1] Young, J. P., et al. "Application of Raman spectroscopy to high-temperature analytical measurements". No. CONF-970201--3. Oak Ridge National Lab., TN (United States), 1997. [2] Dai, S., et al. Development of Raman spectroscopic sensors for magnesium in a molten salt system. No. CONF-920514--1-Extd. Oak Ridge National Lab., TN (United States), 1991.py." Applied spectroscopy 47.8 (1993): 1286-1288.

Relevant Prior Development at Sporian

- Range of high-temp (1000-1800°C) sensor technologies
 - CSP TES/HTF pressure & flow sensors (>800°C)
- Compact spectroscopic monitoring systems Raman
- Water monitoring (commercial)
- Aircraft for gas/atmospheric composition monitoring

Pilot Breathing Air Monitoring System

Molten Nitrate Salt Pressure Sensor

Molten Nitrate Salt Flow Sensor

Envisioned System Hardware Architecture

- Commercial vs research type systems: Conflict of requirements
 - Dynamic range vs resolution (vs cost)
- End Product: Flexible architecture for diverse applications
 - Largely automated operation
 - Cost and ruggedness
 - Target-dependent subsystems

Example System Data

Current State of Development

- Internal performance testing & characterization ongoing...
 - High-temperature immersion probe (800°C)
 - Evaluating window and windowless designs
 - Compact optics module
 - Standalone light source and spectrometer
- Fully integrated system in development...

Evaluation, Validation, and Expected Availability

- Next-gen system design: Prototypes ready spring 2019
- 3rd Party testing: Evaluate performance and utility, and support ongoing Gen3 research
 - NREL (Golden, CO)
 - University of Arizona
 - Through late 2019 / early 2020
- Analytical modeling: Confirm and interpret test results
 - NREL (Boulder, CO)
 - Through mid/late 2019
- Target completion date for performance testing: August 2020

Example 1000°C test system

